skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramesh, Nandini"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tropical Pacific decadal variability (TPDV), though not the totality of Pacific decadal variability, has wide-ranging climatic impacts. It is currently unclear whether this phenomenon is predictable. In this study, we reconstruct the attractor of the tropical Pacific system in long, unforced simulations from an intermediate-complexity model, two general circulation models (GCMs), and the observations with the aim of assessing the predictability of TPDV in these systems. We find that in the intermediate-complexity model, positive (high variance, El Niño–like) and negative (low variance, La Niña–like) phases of TPDV emerge as a pair of regime-like states. The observed system bears resemblance to this behavior, as does one GCM, while the other GCM does not display this structure. However, these last three time series are too short to confidently characterize the full distribution of interdecadal variability. The intermediate-complexity model is shown to lie in highly predictable parts of its attractor 37% of the time, during which most transitions between TPDV regimes occur. The similarities between the observations and this system suggest that the tropical Pacific may be somewhat predictable on interdecadal time scales. 
    more » « less